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An Efficient Algorithm for Transmission Line

Matrix Analysis of Electromagnetic Problems Using

the Symmetrical Condensed Node

Cheuk-yu Edward Tong and Yoshiyuki Fujino

Abstract —T~e symmetrical condensed TLM node has been closely
examined. An efficient algorithm has been developed from the results of

this study which significantly improves the numerical effk’iency of the

node. Certain physical aspects of the symmetrical condensed node are

also disc&sed.

I. INTRODUCTION

The transmission line matr~ (TLM) method has now been

established, owing to the works of Johns [1] and Hoefer [2], as

one of the most powerful time-domain solvers of electromag-

netic problems [3], [4].

The symmetrical condensed node invented by Johns [5] has

proved to be a particularly valuable tool in TLM analysis. Since

it represents both the electric and the magnetic field at the same

point in space, it is more attractive than the expanded node

used in other TLM networks [6], in the Finite-Difference Time-

Domain (FDTD) method [7], and in the spatial network method

[81. Besides, as a consequence of the simplicity of node topology,
ambiguities of interfaces and boundaries are removed. The node

has ~ecently been extended to cover 10SSYmedia [9].

The disadvantage of the symmetrical condensed node is that

no equivalent circuit can be drawn up to represent it. It is solely

characterized by a scattering matrix. The user, therefore, has to

perform a linear transformation using an 18X 18 scattering

matrix at each nodal point. This means that the numerical

efficiency is inherently low. Further, the nature of this scattering

matrix has rarely been discussed.

In this paper, we demonstrate that an efficient algorithm can

be’ obtained for the symmetrical condensed node. Such an

algorithm not only shortens the computation time but also- helps

to unlock the physics hidden behind the scattering matrix. We

shall first discuss the case of the original node before moving on

to the Iossy’node. Final’ly, numerical examples @l be presented.
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II. THE SYMMETRICAL CONDENSED NODE

The basic structure of the symmetrical condensed node as

proposed by Johns is given in Fig. 1. It is connected to each of

its six neighbors by a pair of transmission lines, carrying orthog-

onal polarizations. These lines are numbered 1 to 12. The node

is also connected to six stubs, one for each field component. The

three electric or permittivity stubs (numbered 13 to 15) are

open-circuit, while the magnetic or permeability stubs (16 to 18)

are short-circuit. Hence, each node receives 18 input impulses at

each time step.

Scattering takes place at the center of the node. The 18 input

impulses ~’ are scattered to produce 18 output impulses ~’

into the 18 ports:

y’ = s.~’. (1)

The scattering matrix, S, has been derived by Johns from

Maxwell’s equations and is shown in Fig: 2. The elements of the

matrix” assume the following values:

– Yp Zq
a=

‘q 2(4+~) + 2(4+Zq)

4
b.= ‘P= 2(4+yp)

– Y, Zq
cP~= 2(4+YP) – 2(4-I- Z,)

4

~. ‘~q= ~(4+zq)

fq = Zqdq

gp = Ypbp

~ = (V-4)

p (q+4)

(4-zq)

j,= (4+zq)

where the subscripts p, q = x, y, or z. The subscript p is related

‘to the associated permittivity stub of the port in question and q

is related to the associated permeability stub (See Fig. 2 for the

associations). For example,

S29 = Cxy.

Note that Yp is the normalized characteristic admittance of the

electric stub p, and Zq is the normalized characteristic

impedance of the magnetic stub q.

III. THE SCATTERING MATRIX

Although the scattering matrix appears to be very compli-

cated, it possesses a high degree of symmetry. We have ex-
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Fig. 1. The symmetrical condensed TLM node.

ploited this symmetry to derive the following expressions:

Ux = (v; + V:2) +( V;+ v;) + YXV:3

= (v; +V;2)4(V; +V;)+<V;3 (2)

UY=(V; +V:l)+(V: +V; )+ YYV;4

=(v; +v;,)+(~+vJ)+Yyv;4 (3)

Uz = (v;+ v;) +(V: -i- Vfo) + Y=v&

= (v; +V;)+(v; +V;O)+YZV:5 (4)

JX=(V:– V;)–(V; –V;)– V;6

=-[(vJ-vJ)-(v; -v;) -v;,] (5)

JY=(V; –V{O)–(V; –V; )–V;7

=-[(V; -V;O)-(V; -V;) -V<,] (6)

Jz=(v; –vf2)–(v; –v;l)–v;8

= - [(~i-k’’~~)-(~~ ‘~i~)-~~,] (7)

WX=(V; +V:2)-(V; +V;)=-[(V; +V;2)-(V; +V;)]

(8)

w,=(v:+v;,) -(v: +v:)=-[(v/ +v;l)-(v/+v;)]

(9)

Wz=(v; +v;)–(v; +v;o)=- [(v; +v;)-(v; +v;o)]

(lo)

Kx=(v~–v;) +(v; –v;)=(v~-v;) +(v; –v;) (11)

Ky=(v; –vfo)+(v; –v;) = (v; -V;o)+(v; -vj) (12)

K== (Vf– Vf2)+(V~– Vfl) = (V; –V;2)+(V; –V;l). (13)

Using these relations, it is straightforward to show that the

impulses scattered into the stubs can be readily calculated from

the quantities Ux, u,, U=, Jx, Jy, and Jz:

2YX>
YXV;3 = ~ u. – Ytv;3

x

2YY
YYV;4= — u – YYV;4

4+YY y

2Y,
YZV:5= ~ u= – YZV;5

z

2ZX
–J7;6=- —Jx – Vi6

4+ZX

2ZY
– vi$7= —.ly – V;7

4+ZY

2Z
– V;8 = ~.Tz – V;8.

4+ZZ

(14)

(15)

(16)

(17)

(18)

(19)

In (17) to (19), we use the negative values of the scattered

impulses because stubs 16, 17, and 18 are short-circuit. These

equations, therefore, include the negative reflections of the

stubs. It should be noted that expression (14)–(19) bear exactly

the same form.

It is not difficult to establish the physical signification of ~he

quantities U., Uy, UZ, J,, Jy, and J,. In the original derivation,

.lohns [5] indicated that they were directly proportional to the

magnitudes of the six field components:

EZ=2UX\u(4+YX) (20)

E,=2Uy/U(4+Yy) (21)

Ez=2Uz/w(4+q) (22)

Hx = –2Jx/ZOZt(4+ Z>) (23)

H,= –2Jy/ZOU(4+ Z,) (24)

HZ= –2Jz/ZOw(4+ Z,) (25)
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Fig. 2. The characteristics scatterinsz matrix of the symmetrical con-
densed TLM node.

where u, LJ, and w are the physical dimensions of the node, and

ZO is the free-space impedance.

Johns explained that by virtue of conservation of current, the

sum of certain current pulses should be the same before and

after scattering. This is the physical interpretation of expressions

(2)-(7). A comparison between these relations and (20)-(25)

reveals that they also express the conservation of field required

by Maxwell’s equations. The negative sign in expressions (5), (6),

and (7) reflects the reversal in direction of current flow after

scattering. In the light of this, we can say not only that the

symmetrical condensed node satisfies explicitly thq law of con-

servation of energy, S having been derived by Johns from the

unitary condition ST. S = Z; in addition, electromagnetic fields

are also conserved. The symmetrical condensed node requires

more numerical effort than the FDTD method because the

latter only ensures continuity of fields, and this is only true in

the infinitesimal limit, where the node dimensions tend to zero.

The symmetrical condensed node, on the other hand, satisfies

the field continuity condition even for arbitrary mesh size u x

L, X w. Therefore, one should expect the symmetrical condensed

node to have better dispersion characteristics than to other

networks.

IV. THE ALGORITHM

Now we proceed to show that (2)-(19) can be used to develop

an efficient algorithm for TLM analysis. Given the values of the

18 input impulses, we first compute the values of U,, Jr, W,, and

K, (r = x, y, z) using (2)-(13). Next the impulses scattered into

the stubs can be computed using (14)–(19). Finally, the other

scattered impulses can be derived from relations (2)–(13). For

example,

vf={[(ux–~v;,)+ Wx] + [KZ +(JZ +V;,)] }/4 (26)

V:2={[(Ux -YxV;3)+ w,] - [K= +(JZ +v;s)] }/4 (27)

V;={[(ux -YXV:J -W,] + [KY- (Jy+V:7)]}/4 (28)

V;= {[(uX - YY;s) - Wx] - [Ky -(JY + ~;,)] }/4 (29)

Some remarks can be made concerning this procedure:

● For the perrnittivity stubs, all the expressions involve the

current impulse on the stubs only. Thus, it is more conve-

nient to store YXV13~ YYV14, and YZV15 than the correspond-

ing voltage impulses V13, V14, ancl V15.

● The only multiplications appear in (14)–(19). Hence, we

need only store six multiplying coefficients for each type of

node in order to implement the scattering.

● Equations (2)–(13) contain essentially the sum and differ-

ence of the impulses. A sum of any two terms is accompa-

nied by their difference in another expression. This means

that a full pipeline program can efficiently handle the

manipulations. Parallel processing of the impulses is also

advantageous.

By exploiting such features, it is possible to reduce the num-

ber of floating point operations to six multiplications, 66 addi-

tions\subtractions, and 12 c@isions by 4. This count is still

considerably higher than the FDTD procedure but is compara-

ble to other expanded nodes. It should be noted that the

original scattering matrix requires 144 multiplications and 126

additions/subtractions for direct implementation.

V. NODE WITH Loss

Recently, the symmetrical condensed node has been extended

to cover the case of a lossY medium [9]. It was suggested that

infinite stubs should be included to simulate energy losses. For

10SSYdielectric, one extra stub per electric field component is

necessary. The total number of ports is therefore 21.

The equations developed above also apply to the lossy node

except for certain modifications:

Ux=(Vf+ Vf2)+(V; +V; )+ YxVf3+GxV;9

=(v(+v;2)+ (v; +v;)+qv;3

Uy = (v; + q) +(vi + v;) + YYV?4+ GYWO

=(v; +v;1)+(~+v;)+Y,v;4

UZ=(V:+ V;)+ (V:+ Vfo)+YzV;5+GZV;1

=(v;+v;)+(~;+~fo)+x~{, (32)

where GX, GY, and GZ are the normalized characteristic admit-

tances of the Iossy stubs.

(30)

(31)
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Fig. 3. Dispersion characteristics of a suspended stripline.

The supplementary ports offer no input impul$es. The im-

pulses scattered into the electric stubs are

2YX
Yxvf3 = Ux – Y1V;3

4+ YX+GX

2Y,
Yyvf4 = Uy – YYV;4

4+ YY+GY

2YZ
YZV;5= u= – YZV;5

4+ YZ+GZ

2GX
GXV;9 = u,

4+ YX+GX

2GY
GYV;O= u,

4+ YY+GY

2 G=
GzV& = Uz.

4+ YZ+GZ

(33)

(34)

(35)

(36)

(37)

(38)

From the user’s point of view, unless it is important to know

the absolute magnitude of the losses, it is not necessary to store

the lost impulses— V19, V20, and Vzl. That is to say, the basic

memory requirement of the 10SSY node is the same as the

original node. By properly manipulating expressions (33)–(38), it

is found that the introduction of losses adds only six more

multiplications to our algorithm.

VI. NUMERICAL APPLICATION

Our algorithm has been implemented in both Fortran and

Assembler language. The pipeline features of low-level pro-

gramming form an excellent environment for the TLM routine.

As a consequence, the program written in Fortran running on a

Titan super minicomputer is only about three times as fast as

that of the Assembler program running on a Compaq 386/25

PC (25 MHz clock). Using single precision, the PC version of the

program runs at a speed of 190 ps/node/iteration.

We have successfully applied our algorithm to solve a wide

range of electromagnetic problems [10], [11], among them dis-

persion characteristics, the determination of S parameters, and

radiation problems. In order to illustrate the validity of this

algorithm, we present here the computed dispersion characteris-

tics of a suspended stripline (Fig. 3) and that of a finline (Fig. 4).

The results are compared with those obtained from a standard

1
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Fig. 4. Dispersion characteristics of a finline.

spectral-domain approach. The precision obtained ranges from

290 to 5Y0. The values of (AO /Ag) show a higher deviation for

the finline because it contains a fine structure of wave diffrac-

tion—thin substrate and narrow slot.

VII. CONCLUSION

We have presented a study of the symmetrical condensed

TLM node. The study reveals not only that the characteristics

scattering matrix satisfies the law of conservation of energy but

also that electromagnetic fields are conserved even for finite

node spacing. Using the results of this study, we have been able

to develop an efficient algorithm for TLM analysis using the

symmetrical condensed node. This algorithm significantly re-

duces the number of floating point operations so that the speed

of computation is comparable to that of other expanded node

analysis schemes. The case of 10SSY medium has also been

discussed. Having a better understanding of this symmetrical

node and being equipped with a fast algorithm, we believe that

TLM analysis of three-dimensional electromagnetic problems

can revolutionize the art of computer-aided design of microwave

and millimeter-wave circuits.
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Field Distribution in a Circular Waveguide

with a Corrugated Dielectric Lining

Tenneti C. Rao and P. McCormack

Abstract —The problem of wave propagation through a circular cylin-

der with a periodically interrupted dielectric lining is solved by a

boundary value approach by considering the region between the corru-

gations as a medium with a tensor permittivity. The characteristic

equation for the phase constant is derived by matching the field compo-
nents. Solutions for the phase constant are obtained and the variation of

the phase constant with the physical parameters is studied. The varia-
tion of the axial and circumferential electric field components in the
transverse plane is also studied.

I. INTRODUCTION

In many applications involving large reflector antenna sys-

tems, there is a growing need for a feed structure that will

combine the advantages of high gain, low spillover loss, reduced

side-lobe level, low cross-polarization, and high aperture effi-

ciency. Thus, Kay [1] in the U.S. and Minnet and Thomas [2] in

Australia independently developed the concepts of a corrugated

horn and a corrugated circular waveguide, respectively. In the

former case, Kay came to the conclusion that grooved walls in a

conical horn would present the same boundary conditions to all

polarizations and hence would create a tapered aperture field

distribution in all planes, resulting in a symmetric radiation

pattern with equal E- and H-plane beam widths. Minnet and

Thomas showed that the focal region fields of a paraboloidal

reflector consisted of a superposition of cylindrical hybrid modes,

which are the natural propagating modes of a circular wave-

guide with corrugated walls. It was realized that such walls are

anisotropic in the sense that they impose the same boundary

conditions on the electric and magnetic fields, which in turn

would lead to an axially symmetric radiation pattern. Clarricoats

and Saha [3] carried out a detailed analysis of the propagation

and radiation characteristics of a corrugated circular waveguide

feed. The radiation pattern and cross-polarization of a dielec-

tric-lined circular waveguide feed were determined by Kumar

[4]. If the dielectric lining of the circular waveguide is periodi-

cally interrupted, it is believed that the cross-polarization will be
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Fig. 1. Geometry of the problem.

significantly reduced, and some prelimina~ calculations were

reported by Mahmoud and Aly [5]. In their study, the region

between two disks is considered a medium with tensor permittiv-

ity. In the present article, we study the boundary value problem

of a dielectric-disk loaded circular waveguide and investigate the

propagation characteristics, for example, the phase constant and

its variation with the physical parameters of the structure. More

details are given elsewhere [6]. Furthermore, the field distribu-

tion in the transverse plane is studied; in particular, the varia-

tion of the axial and circumferential electric field components

with the normalized radius is examined.

II. SOLUTION OF THE BOUNDARY VALUE PROBLEM

The geometty of the structure under investigation is shown in

Fig. 1. A circular waveguide with an internal diameter of 2b
exists with its axis coinciding with the z axis of the cylindrical

coordinate system (p, ~, z). The walls of the waveguide are

assumed to be perfectly conducting and the waveguide is period-

ically loaded with dielectric disk of internal diameter 2a and

external diameter 2b. The disks have a thickness t and the

interdisk spacing is assumed to be s. The relative dielectric

constant of the disks is e, ~ and for generality we assume the

region O < p < a to have a dielectric constant c, ~. The region

between p = a and p = b k assumed to have a tensor permittiv-

ity whose components are given by [5]

(la)

where

fz=EoE,2/[~r2 –(f/L’)(~r2 -1)1 (lb)

and

6,=eo[l +( Er2–l)(t/L)], L=t i-s. (lC)

The axial components of the electric and magnetic fields in

region 1 (Os p < a) are given by

Ezl=AIJ1(klp) cos~exp(–j/3z) (2a)

n&.1 = ~lJ1(~lp)sin+exp(–jpz) (2b)

where A ~ and B1 are the amplitude constants, JI(klp) is the

Bessel function of the first kind and order 1, and ~ is the axial

phase constant. The transverse wavenumber is given by kl =
(kjE,l – p2)1/2, where /c. is the free-space wavenumber

(OJ=). In a similar manner, the axial components of the

electric and magnetic fields in region 2 (a < p < b) can be

0018 -9480/91 /0800-1424 $01.00 01991 IEEE


