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An Efficient Algorithm for Transmission Line
Matrix Analysis of Electromagnetic Problems Using
the Symmetrical Condensed Node

Cheuk-yu Edward Tong and Yoshiyuki Fujino

Abstract —The symmetrical condensed TLM node has been closely
examined. An efficient algorithm has been developed from the results of
this study which significantly improves the numerical efficiency of the
node. Certain physical aspects of the symmetrical condensed node are

K3

also discussed.

1. INTRODUCTION

The transmission line matrix (TLM) method has now been
established, owing to the works of Johns [1] and Hoefer [2], as
one of the most powerful time-domain solvers of electromag-
netic problems {3], [4].

The symmetrical condensed node invented by Johns [5] has
proved to be a particularly valuable tool in TLM analysis. Since
it represents both the electric and the magnetic field at the same
point in space, it is more attractive than the ecxpanded node
used in other TLM networks [6], in the Finite-Difference Time-
Domain (FDTD) method [7], and in the spatial network method
[8]. Besides, as a consequence of the simplicity of node topology,
ambiguities of interfaces and boundaries are removed. The node
has recently been extended to cover lossy media [9].

The disadvantage of the symmetrical condensed node is that
no equivalent circuit can be drawn up to represent it. It is solely
characterized by a scattering matrix. The user, therefore, has to
perform a linear transformation using an 18X 18 scattering
matrix at each nodal point. This means that the numerical
efficiency is inherently low. Further, the nature of this scattering
matrix has rarely been discussed.

In this paper, we demonstrate that an efficient algorithm can
be obtained for the symmetrical condensed node. Such an
algorithm not only shortens the computation time but also helps
to unlock the physics hidden behind the scattering matrix. We
shall first discuss the case of the original node hefore moving on
to the lossy node. Finally, numerical examples will be presented.
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II. Tue SymMMETRICAL CONDENSED NODE

The basic structure of the symmetrical condensed node as
proposed by Johns is given in Fig. 1. It is connected to each of
its six neighbors by a pair of transmission lines, carrying orthog-
onal polarizations. These lines are numbered 1 to 12. The node
is also connected to six stubs, one for each field component. The
three electric or permittivity stubs (numbered 13 to 15) are
open-circuit, while the magnetic or permeability stubs (16 to 18)
are short-circuit. Hence, each node receives 18 input impulses at
each time step.

Scattering takes place at the center of the node. The 18 input
impulses V¥ are scattered to produce 18 output impulses V*
into the 18 ports:

Vi=SV (1)

The scattering matrix, S, has been derived by Johns from
Maxwell’s equations and is shown in Fig: 2. The elements of the
matrix assume the following values:

_)Tv Zq
a,,= +
P4 2(44Y,)  2(4+Z,)

4
by=e,= 2(4+7)

_ -Y Z
77 2(4+4Y,)  2(4+Z,)

c

4
Y=la= 501 z,)
fq=quq
8 =Y,b,

_(%-9
(Y, +4)
. (4_24)
la" 4+ z,)

where the subscripts p,g = x, y, or z. The subscript p is related
‘to the associated permittivity stub of the port in question and ¢
is related to the associated permeability stub (See Fig. 2 for the
associations). For example,

829 = Cyy-

Note that Y, is the normalized characteristic admittance of the
electric stub p, and Z, is the normalized characteristic

impedance of the magnetic stub g.

III. THE SCATTERING MATRIX

Although the scattering matrix appears to be very compli-
cated, it possesses a high degree of symmetry. We have ex-
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Fig. 1. The symmetrical condensed TLLM node.

ploited this symmetry to derive the following expressions: Using these relations, it is straightforward to show that the

impulses scattered into the stubs can be readily calculated from

Ux=(Vls+V1S2)+(V2s+V9S)+KV1S3

the quantities U,, v, U,lJ,J, and J;:

z? Yx?

=(VI+V5L)+H(Vi+VY+ Y.V} 2 2Y,. |
( 1 12) ( 2 9) x¥13 ( ) Y;Vls3=4+;(]x—'YxV113 (14)
U=(Vs+ Vi) +(Vi+V5) + Y Vi *
Y,
= (Vi) + (Vi + V) + Y, 3) YW= 5 U~ HVie (15)
Y
U =(VE+ V) +(VE+ Vi) + YV 2Y.
A YVVi= U~ YV (16)
= (VE+ V) + (Vi + Vi) + Y.V 4) 4+Y,
2Z,. .
To= (Vi = V)= (V= V) = Vis V=l = Vis (17)
. , X
== =)~ (- v3) -7 (5) 2z,
‘ Ve, = J,—V{ 18
Jy= (Ve =Vie)=(Vi~V3) =V Voarzr Y %
—-[-v) -l © V=1,V (19)
L=(Vi-Vi)—(V5-Vi)—Vis In (17) to (19), we use the negative values of the scattered
==V VN (VI =V Y=V 7 impulses because stubs 16, 17, and 18 are short-circuit. These
[( ! 12) ( 3 11) 18] Q) equations, therefore, include the negative reflections of the
W,=(Vi+ V)~ (Vi+ V)=~ [(Vf +Vh) - (Vi+ ng)] stubs. It should be noted that expression (14)—(19) bear exactly
g the same form. .
(8) It is not difficult to establish the physical signification of the
(s s\ _ (1S o i iN_ (1 . quantities U,, U, U,, J,, J,, and J,. In the original derivation,
W, =5+ Vi) - (V+75) [(V3 Vi) - (Vi VS)] Johns [5] indicated that they:y were directly proportional to the
%) magnitudes of the six field components:
W= (V3 +V3) = (Ve +Vio) = = [(V + Vi) = (Vi + Vio)] By =20, /u(4+Y,) (20)
(10) E,=2U, /v(4+Y,) (21)
— - E, =20, /w(4+Y.) 22)
K, =(Vi=VH)+(Vs-vi)=(Vi-Vi)+(Vi-vi) (1) ‘
H,=-2J./Zyu(4+Z,) (23)
Ky=(VtSS—V1sO)+(V§_V9S)=(V61_V110)+(V21_V9l) (12) Hy=_2]y/ZOU(4+ Zy) (24)
K, =(Vi-VR)+(Vi-V) =V VL) +(Vi=-Viy). (13) H,=-2],/Zw(4+Z.) (25)
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11 y z ~d e b b a d g i
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13 x e e e e
14 y e e e e h
15 2 e e e e h
16 x t -1 f -t j
17 y -1 f f -t 3
18 z t -1 t -t J

Assocjated Stub Y
Associated Stub Z

Fig. 2. The characteristics scattering matrix of the symmetrical con-
densed TLM node.

where u, v, and w are the physical dimensions of the node, and
Z, is the free-space impedance.

Johns explained that by virtue of conservation of current, the
sum of certain current pulses should be the same before and
after scattering. This is the physical interpretation of expressions
(2)-(7). A comparison between these relations and (20)-(25)
reveals that they also express the conservation of field required
by Maxwell’s equations. The negative sign in expressions (5), (6),
and (7) reflects the reversal in direction of current flow after
scattering. In the light of this, we can say not only that the
symmetrical condensed node satisfies explicitly the law of con-
servation of energy, S having been derived by Johns from the
unitary condition S7-§=I; in addition, electromagnetic fields
are also conserved. The symmetrical condensed node requires
more numerical effort than the FDTD method because the
latter only ensures continuity of fields, and this is only true in
the infinitesimal limit, where the node dimensions tend to zero.
The symmetrical condensed node, on the other hand, satisfies
the field continuity condition even for arbitrary mesh size u X
v X w. Therefore, one should expect the symmetrical condensed
node to have better dispersion characteristics than to other
networks.

IV. THE ALGORITHM

Now we proceed to show that (2)-(19) can be used to develop
an efficient algorithm for TLM analysis. Given the values of the
18 input impulses, we first compute the values of U,, J,, W,, and
K, (r=1x,y,z) using (2)-(13). Next the impulses scattered into
the stubs can be computed using (14)—(19). Finaily, the other
scattered impulses can be derived from relations (2)—(13). For
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example,
V=l - Vi) + ]+ (K (L4 Vi) )fe - (26)
Vi ={[(U - ¥V + W] - [K.+ (7L + Vil}f4 (27)
vi={[(U - YV - W]+ [K, - (], +V5)]}[+ (28)
Vs ={l(U Y)Wl - [K, = (5, + Vi) )[4 (29

Some remarks can be made concerning this procedure:

* For the permittivity stubs, all the expressions involve the
current impulse on the stubs only. Thus, it is more conve-
nient to store Y, V13, Y, V,, and Y,V than the correspond-
ing voltage impulses V5, V34, and V..

* The only multiplications appear in (14)—(19). Hence, we
need only store six multiplying coefficients for each type of
node in order to implement the scattering.

¢ Equations (2)-(13) contain essentially the sum and differ-
ence of the impulses. A sum of any two terms is accompa-
nied by their difference in another expression. This means
that a full pipeline program can efficiently handle the
manipulations. Parallel processing of the impulses is also
advantageous.

By exploiting such features, it is possible to reduce the num-
ber of floating point operations to six multiplications, 66 addi-
tions /subtractions, and 12 djvisions by 4. This count is still
considerably higher than the FDTD procedure but is compara-
ble to other expanded nodes. It should be noted that the
original scattering matrix requires 144 multiplications and 126
additions /subtractions for direct implementation.

V. Nopr witd Loss

Recently, the symmetrical condensed node has been extended
to cover the case of a lossy medium [9]. It was suggested that
infinite stubs should be included to simulate energy losses. For
lossy dielectric, one extra stub per clectric ficld component is
necessary. The total number of ports is therefore 21.

The equations developed above also apply to the lossy node
except for certain modifications:

U= V) +(VE+V5) + Y Vi + GV

=(V1’+V1‘2)+(V2’+V9’)+KV1’3 (30)
U =(V3+Vi)+(Vi+VE)+ Y Vi + GV

=(V;+V;l)+(m'+V8’)+1’yV{4 (31)
U=V +V)+ (Vi + Vi) + Vs + G V3

=(Vi+ V7l) + (Vsl + VIIO)‘_I_ Y. Vis (32)

where G, G, and G, are the normalized characteristic admit-
tances of the lossy stubs,
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Fig. 3. Dispersion characteristics of a suspended stripline.

The supplementary ports offer no input impulses. The im-
pulses scattered into the clectric stubs are

X

Y. Vi = mUx ~Y, Vi (33)
2Y,
YyV14 = _4+ Yy_"' Gy Uy - YyV14 (34)
YVi=—t—U~-YV, 35
zV 15 4+Y; + Gz z zV 15 ( )
GVs 26, U 36
xV 19— 4+Yx+Gx X ( )
G,V3 26, U, 37
Ve G GD
GV 26 U, 38
z7 21 4+Yz + Gz z* ( )

From the user’s point of view, unless it is important to know
the absolute magnitude of the losses, it is not necessary to store
the lost impulses—V34, V5, and V,;. That is to say, the basic
memory requirement of the lossy node is the same as the
original node. By properly manipulating expressions (33)-(38), it
is found that the introduction of losses adds only six more
multiplications to our algorithm.

VI. NUMERICAL APPLICATION

Our algorithm has been implemented in both Fortran and
Assembler language. The pipeline features of low-level pro-
gramming form an excellent environment for the TLM routine.
As a consequence, the program written in Fortran running on a
Titan super minicomputer is only about three times as fast as
that of the Assembler program running on a Compaq 386 /25
PC (25 MHz clock). Using single precision, the PC version of the
program runs at a speed of 190 us/node /iteration.

We have successfully applied our algorithm to solve a wide
range of electromagnetic problems [10], [11], among them dis-
persion characteristics, the determination of S parameters, and
radiation problems. In order to illustrate the validity of this
algorithm, we present here the computed dispersion characteris-
tics of a suspended stripline (Fig. 3) and that of a finline (Fig. 4).
The results are compared with those obtained from a standard
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Fig. 4. Dispersion characteristics of a finline.

spectral-domain approach. The precision obtained ranges from
2% to 5%. The values of (A, /A,) show a higher deviation for
the finline because it contains a fine structure of wave diffrac-
tion—thin substrate and narrow slot.

VII. ConcLUSION

We have presented a study of the symmetrical condensed
TLM node. The study reveals not only that the characteristics
scattering matrix satisfies the law of conservation of energy but
also that electromagnetic fields are conserved even for finite
node spacing. Using the results of this study, we have been able
to develop an efficient algorithm for TI.LM analysis using the
symmetrical condensed node. This algorithm significantly re-
duces the number of floating point operations so that the speed
of computation is comparable to that of other expanded node
analysis schemes. The case of lossy medium has also been
discussed. Having a better understanding of this symmetrical
node and being equipped with a fast algorithm, we believe that
TIM analysis of three-dimensional electromagnetic problems
can revolutionize the art of computer-aided design of microwave
and millimeter-wave circuits.
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Field Distribution in a Circular Waveguide
with a Corrugated Dielectric Lining

Tenneti C. Rao and P. McCormack

Abstract —The problem of wave propagation through a circular cylin-
der with a periodically interrupted dielectric lining is seolved by a
boundary value approach by considering the region between the corru-
gations as a medium with a tensor permittivity. The characteristic
equation for the phase constant is derived by matching the field compo-
nents. Solutions for the phase constant are obtained and the variation of
the phase constant with the physical parameters is studied. The varia-
tion of the axial and circumferential electric field components in the
transverse plane is also studied.

1. INTRODUCTION

In many applications involving large reflector antenna sys-
tems, there is a growing need for a feed structure that will
combine the advantages of high gain, low spillover loss, reduced
side-lobe level, low cross-polarization, and high aperture effi-
ciency. Thus, Kay [1] in the U.S. and Minnet and Thomas [2] in
Australia independently developed the concepts of a corrugated
horn and a corrugated circular waveguide, respectively. In the
former case, Kay came to the conclusion that grooved walls in a
conjcal horn would present the same boundary conditions to all
polarizations and hence would create a tapered aperture field
distribution in all planes, resulting in a symmetric radiation
pattern with equal E- and H-plane beam widths. Minnet and
Thomas showed that the focal region fields of a paraboloidal
reflector consisted of a superposition of cylindrical hybrid modes,
which are the natural propagating modes of a circular wave-
guide with corrugated walls. It was realized that such walls are
anisotropic in the sense that they impose the same boundary
conditions on the electric and magnetic fields, which in turn
would lead to an axially symmetric radiation pattern. Clarricoats
and Saha [3] carried out a detailed analysis of the propagation
and radiation characteristics of a corrugated circular waveguide
feed. The radiation pattern and cross-polarization of a dielec-
tric-lined circular waveguide feed were determined by Kumar
[4]. If the dielectric lining of the circular waveguide is periodi-
cally interrupted, it is believed that the cross-polarization will be
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Fig. 1. Geometry of the problem.

significantly reduced, and some preliminary calculations were
reported by Mahmoud and Aly [5]. In their study, the region
between two disks is considered a medium with tensor permittiv-
ity. In the present article, we study the boundary value problem
of a dielectric-disk loaded circular waveguide and investigate the
propagation characteristics, for example, the phase constant and
its variation with the physical parameters of the structure. More
details are given elsewhere [6]. Furthermore, the field distribu-
tion in the transverse planc is studied; in particular, the varia-
tion of the axial and circumferential electric field components
with the normalized radius is examined.

II. SoLuTioN oF THE BOUNDARY VALUE PROBLEM

The geometry of the structure under investigation is shown in
Fig. 1. A circular waveguide with an internal diameter of 25
exists with its axis coinciding with the z axis of the cylindrical
coordinate system (p.¢,z). The walls of the waveguide are
assumed to be perfectly conducting and the waveguide is period-
ically loaded with dielectric disk of internal diameter 2a and
external diameter 2b. The disks have a thickness ¢ and the
interdisk spacing is assumed to be s. The relative dielectric
constant of the disks is €,, and for generality we assume the
region 0 < p<a to have a dielectric constant ¢,;. The region
between p=a and p = b is assumed to have a tensor permittiv-
ity whose components are given by [5]

e 0 0
e=|0 €, 0 (1a)
0 0 -
where
Ez=EOEIZ/[ErZ_(t/L)(ErZ_l)] (lb)
and
€, =eo[1+(e,,~1)(¢/L)], L=t+s. (1c)

The axial components of the eclectric and magnetic fields in
region 1 (0 < p < a) are given by

E, =AJ(kp)cosexp(—jBz)

noH, = BJ(k,p)sin ¢ exp (— jBz)

(22)
(2b)

where A; and B, are the amplitude constants, J,(k,p) is the
Bessel function of the first kind and order 1, and g is the axial
phase constant. The transverse wavenumber is given by k=
(kZe,, — B*)'/?, where k, is the free-space wavenumber
(0y/po€q)- In a similar manner, the axial components of the
electric and magnetic fields in region 2 (a<p<b) can be
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